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SUMMARY

In this paper, we develop a robust reduced-order modeling method, named algebraic dynamic condensation,
which is based on the improved reduced system method. Using algebraic substructuring, the global mass
and stiffness matrices are divided into many small submatrices without considering the physical domain,
and substructures and interface boundary are defined in the algebraic perspective. The reduced model is
then constructed using three additional procedures: substructural stiffness condensation, interface boundary
reduction, and substructural inertial effect condensation. The formulation of the reduced model is simply
expressed at a submatrix level without using a transformation matrix that induces huge computational cost.
Through various numerical examples, the performance of the proposed method is demonstrated in terms of
accuracy and computational cost. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In structural dynamics, dynamic condensation methods [1–15] have been widely used for decades to
reduce the degrees of freedom (DOFs) of a large finite element (FE) model. In dynamic condensation
methods, DOFs in the original FE model are separated into the retained and truncated DOFs, and the
reduced model is constructed by condensing the stiffness and inertial effects for the truncated DOFs
into retained DOFs. Dynamic condensation methods have been employed in various engineering
fields such as structural health monitoring, FE model updating, experimental modal analysis and
experimental-FE model correlation [1–11].

In the 1960s, Guyan [1] and Irons [2] independently proposed a static condensation method.
Because, in the static condensation, the inertia effects of the truncated DOFs are ignored, the solution
accuracy for higher modes is not good. In 1989, considering the inertia effects properly, O’Callahan
[7] proposed the improved reduced system (IRS) method. The IRS method has been widely adopted
because of its excellent solution accuracy and simple formulation. Since then, Friswell [10] devel-
oped the iterative IRS method (IIRS), and Xia and Lin [11] improved the IIRS method. While the
IIRS method can provide further improved accuracy, additional computational cost is inevitable. In
order to improve computational efficiency, Bouhaddi and Fillod [12–14] applied physical domain-
based substructuring, which is a key concept of component mode synthesis (CMS) methods [16–23],
to the Guyan reduction. Kim and Cho [24, 25] applied physical domain-based substructuring to the
IRS and IIRS methods.

Since the 1970s, several algebraic substructuring algorithms have been developed in applied
mathematics [26–29]. In algebraic substructuring, a large sparse matrix is automatically divided into
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many small submatrices without consideration of the physical domain. Therefore, a large number
of substructures (submatrices) can be effectively managed in computation, and thus, computational
cost can be significantly reduced. Algebraic substructuring was successfully applied to the CMS
methods [30–34], and it offered remarkable computational efficiency.

In this study, we develop a new efficient reduced-order modeling technique, named algebraic
dynamic condensation. The formulation is based on the IRS method. The design focus is on com-
putational efficiency, which is achieved avoiding expensive global matrix operations and matrix
populations. First, global mass and stiffness matrices are automatically partitioned using alge-
braic substructuring. The substructural stiffness is then condensed into the interface boundary,
and the interface boundary is reduced considering the dominant interface normal modes. Finally,
the reduced model is constructed by condensing the substructural inertial effects into the reduced
interface boundary.

The formulation of the proposed method can be simply expressed using multiplications and sum-
mations of submatrices, and thus, it presents excellent computational efficiency in comparison to
the IRS method. The proposed method also provides better accuracy than the IRS method. A great
feature of our method is that, as the number of substructures (submatrices) increases, both accuracy
and computation cost improve, and unlike the IRS method, the proposed method can handle rela-
tively large FE models. We also investigate the performance of the proposed method compared with
the Craig–Bampton (CB) method, which is a well-known and widely used CMS method.

In Section 2, the formulation of the IRS method is briefly reviewed, and the proposed method
is formulated in Section 3. Using several structural problems, the performance of our method is
demonstrated and compared with the IRS and CB methods in Sections 4 and 5, respectively. Finally,
conclusions are drawn in Section 6.

2. IMPROVED REDUCED SYSTEM METHOD

In this section, we briefly review the formulation of the IRS method for a structural FE model. The
detailed derivations are well presented in References [7–10].

In the IRS method, the equations of motion for free vibration without damping are given by

Mg Rug CKgug D 0; (1)

with Mg D

�
Mt Mtr

MT
tr Mr

�
;Kg D

�
Kt Ktr

KT
tr Kr

�
;ug D

�
ut
ur

�
; (2)

where Mg and Kg are the global mass and stiffness matrices, respectively, ug is the global dis-
placement vector, and .R/ D d2. /=dt2 represents second-order differentiation with respect to the
time variable. The subscripts t and r denote the truncated and retained DOFs, respectively, while
the subscript t r denotes the coupled DOFs between the truncated and retained DOFs.

The eigenvalue problem for the global structural FE model is given by

Kg.'g/i D � i Mg.'g/i for i D 1; 2; : : : ; Ng ; (3)

and, using the calculated eigenvectors, the global displacement vector ug is expressed by

ug D ˆgqg (4a)

with ˆg D Œ .'g/1 .'g/2 � � � .'g/Ng �;qg D

2
6664

q1
q2
:::

qNg

3
7775 ; (4b)

in which � i and .'g/i are the eigenvalue and eigenvector corresponding to the i th global mode, and
Ng is the number of DOFs in the global FE model. Here, ˆg is the global eigenvector matrix that
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contains the eigenvectors .'g/i , and qg is the generalized coordinate vector. Note that .'g/i is the
mass-normalized eigenvector.

Using the relation .R/ D d2. /=dt2 D ��. /, Equation (1) is rewritten as�
Kt Ktr

KT
tr Kr

� �
ut
ur

�
D �

�
Mt Mtr

MT
tr Mr

� �
ut
ur

�
; (5)

and, expanding the first row equation, the truncated DOF vector ut is represented by

ut D �.Kt � �Mt /
�1.Ktr � �Mtr/ur

D Œ�K�1t Ktr C �K�1t .Mtr �MtK�1t Ktr/C o.�
2/C o.�3/C � � � � ur :

(6)

Neglecting higher order terms of � in Equation (6), the truncated DOF vector is approximated as

ut � Nut D Œ�K�1t Ktr C �K�1t .Mtr �MtK�1t Ktr/� ur ; (7)

and then the global displacement vector ug is approximated as

ug � Nug D
�
Nut
ur

�
D .TG C �Ta/ur ; (8a)

with TG D
�
�K�1t Ktr

Ir

�
;Ta D

�
K�1t .Mtr �MtK�1t Ktr/

0

�
; (8b)

in which TG denotes the Guyan transformation matrix [1] called the ‘static condensation matrix’,
Ta is an additional transformation matrix containing the inertial effects of the truncated DOFs, and
Ir is the identity matrix for the retained DOFs. The overbar ( ¯ ) denotes the approximated quantities.

Considering only the transformation matrix TG in Equation (8a), the approximated global
displacement vector Nug in the Guyan reduction is defined by

Nug D TGur ; (9)

and the resulting reduced eigenvalue problem becomes

KG ur D N�MGur with MG D TTGMgTG ;KG D TTGKgTG ; (10)

where MG and KG are the reduced mass and stiffness matrices in the Guyan reduction, and N� is the
approximated eigenvalue.

The matrix M
�1

G is pre-multiplied on the left-hand and right-hand sides of Equation (10), and the
following equation is obtained

N�ur D HGur with HG DM
�1

G KG : (11)

Substituting Equation (11) into Equation (8a), the approximated global displacement vector Nug
is redefined as

Nug D T1ur with T1 D TG C TaHG ; (12)

in which T1 is the transformation matrix of the IRS (improved reduced system) method.
The reduced mass and stiffness matrices in the IRS method are obtained as

M1 D TT1 MgT1 D MG C TTGMgTaHG CHT
GTTa MgTG CHT

GTTa MgTaHG ; (13a)

K1 D TT1 KgT1 D KG C TTGKgTaHG CHT
GTTa KgTG CHT

GTTa KgTaHG : (13b)

The reduced eigenvalue problem is given by

K1. N'/i D N� i M1 . N'/i for i D 1; 2; : : : ; N ; (14)
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where N� i and . N'/i are the approximated eigenvalues and eigenvectors in the IRS method, N is the
number of DOFs in the reduced model (N D Nr , in which Nr is the number of the retained DOFs),
and the approximated global eigenvector . N'/i can be calculated by

. N'g/i D T1 N'i : (15)

The transformation procedure in Equation (13) is performed through simple matrix multiplications.
However, because the matrices in Equation (13) are the size of the global system (Ng/ and the
transformation matrices are highly populated, the required computational cost could be huge for
large FE models.

3. ALGEBRAIC DYNAMIC CONDENSATION METHOD

In this section, we describe the key procedures of the algebraic dynamic condensation method:
algebraic substructuring, substructural stiffness condensation, interface boundary reduction, and
substructural inertial effect condensation.

The design focus of the proposed method is on computational efficiency and thus expensive global
matrix operations and matrix populations are avoided within the formulation.

3.1. Algebraic substructuring

In algebraic substructuring, rows and columns of an original large sparse matrix are permuted, and
the permuted matrix is then partitioned into many submatrices; see Figure 1. Note that the matrix
permutation is performed by renumbering nodes in FE models. The permutation procedure does not
alter the physical characteristic of original FE models.

In a large FE model, the original mass and stiffness matrices are large and sparse. Using the
algebraic substructuring procedure, the matrices can be automatically partitioned into many subma-
trices. Here, those submatrices could be defined as substructures and the interface boundary in the
algebraic perspective.

After the algebraic substructuring, the global mass and stiffness matrices, Mg and Kg , are
partitioned into n substructures and the interface boundary

in which Mi and Ki denote the diagonal component mass and stiffness matrices of the i th substruc-
ture, respectively, and Mb and Kb denote the mass and stiffness matrices of the interface boundary,
respectively. The off-diagonal component matrices Mc

i and Kc
i denote the mass and stiffness matri-

ces of the i th substructure coupled with the interface boundary. Note that the global partitioned
matrices in Equation (16) have the same form as used in the CB method [17].

3.2. Substructural stiffness condensation

Using the partitioned mass and stiffness matrices in Equation (16), the eigenvalue problem for the
global structure is expressed as

�
Ks Kc

KT
c Kb

� �
us
ub

�
D �

�
Ms Mc

MT
c Mb

� �
us
ub

�
; (17)

where the subscripts s and b denote the substructural and interface boundary quantities, respectively,
and the subscript c denotes the coupled quantities between the substructures and interface boundary.
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Figure 1. Algebraic substructuring procedure: (a) Nonzero pattern of an original large sparse matrix, (b)
Nonzero pattern of the permuted matrix, (c) Matrix substructuring (eight substructures and the interface

boundary).

Ms and Ks are the block-diagonal mass and stiffness matrices that consist of the substructural mass
and stiffness matrices, Mi and Ki .

From the first row in Equation (17), the substructural displacement vector us is represented in
terms of ub

us D �.Ks � �Ms/
�1.Kc � �Mc/ub D Œ‰c C �K�1s OMc C o.�

2/C o.�3/C � � � � ub; (18a)

with ‰c D �K�1s Kc ; OMc DMc CMs‰c ; (18b)

in which the global eigenvalue � is an unknown scalar value. Neglecting terms with � in
Equation (18a), the substructural displacement vector us can be approximated by the interface
displacement vector ub

us � Nus D ‰cub; (19)

and, then the global displacement vector ug is approximated by

ug � Nug D
�
Nus
ub

�
D ‰ ub with ‰ D

�
‰c
Ib

�
; (20)
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where ‰ denotes the interface constraint mode matrix [17], ‰c is the constraint mode matrix to
couple the substructures with the interface boundary, and Ib is the identity matrix for the inter-
face boundary. Note that ‰ is identical to the Guyan transformation matrix TG in Equation (8b).
That is, ‰ is the static condensation matrix that condenses the substructural stiffness into the
interface boundary.

The submatrix form of ‰ in Equation (20) is described as

‰ D

2
66664
‰ c
1

‰ c
2
:::

‰ c
n

Ib

3
77775 with ‰ c

i D �.K
s
i /
�1Kc

i for i D 1; 2; : : : ; n; (21)

where ‰ci is the constraint mode matrix to couple the i th substructure with the interface boundary.
Here, the inverse matrix .Ks

i /
�1 can be effectively computed using the Cholesky factorization of

Ks
i . Substituting Equation (20) into Equation (17) and pre-multiplying ‰T , the following reduced

eigenvalue problem is obtained

OKbub D N� OMbub; (22)

with

OMb D ‰
TMg‰ DMb CMT

c ‰c C‰
T
c
OMc ; (23a)

OKb D ‰
TKg‰ D Kb CKT

c ‰c ; (23b)

in which OMb and OKb are the reduced mass and stiffness matrices of sizeNb �Nb (Nb is the number
of DOFs in the interface boundary).

The matrices Mc , ‰c , OMc , and Kc in Equation (23) are represented in submatrix form as

Mc D

2
6664

Mc
1

Mc
2
:::

Mc
n

3
7775 ; ‰c D

2
6664
‰ c
1

‰ c
2
:::

‰ c
n

3
7775 ; OMc D

2
66664
OM
c

1

OM
c

2
:::

OM
c

n

3
77775 ; Kc D

2
6664

Kc
1

Kc
2
:::

Kc
n

3
7775 ; (24)

and then the reduced mass and stiffness matrices can be effectively calculated at the submatrix level
through the following submatrix operations

OMb DMb C

nX
iD1

.Mc
i /
T‰ c

i C

nX
iD1

.‰ c
i /
T OM

c

i with OM
c

i DMc
i CMi‰

c
i ; (25a)

Table I. Computational procedure of the algebraic dynamic condensation.

Computational procedure Related equations

Step 1. Algebraic substructuring of Mg and Kg 16
Step 2. Substructural stiffness condensation

a. Compute �.Ksi /
�1, ‰ c

i and OM
c

i . 21, 25a
b. Calculate OMb and OKb . 25

Step 3. Interface boundary reduction
a. Calculate the dominant interface normal mode matrix, ˆd

b
27

b. Calculate Mb and Kb . 29
Step 4. Substructural inertial effect condensation

a. Calculate Hb , Ai , R1 and R2. 34, 37, 38b
b. Calculate the reduced matrices, QMb and QKb . 38a

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 109:1701–1720
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Figure 2. Rectangular plate problem (60 × 36 mesh, 11,285 DOFs).

Figure 3. Relative eigenvalue errors by the IRS and proposed methods for the rectangular plate problem:
(a) Nr D 100 and N b D 100 (b) Nr D 300 and N b D 300.
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OKb D Kb C

nX
iD1

.Kc
i /
T‰ c

i : (25b)

3.3. Interface boundary reduction

As the number of substructures increases, the DOFs of the interface boundary rapidly grows. In
order to avoid the escalating computational cost, it is essential to reduce the interface boundary.

After solving the reduced eigenvalue problem in Equation (22), the interface displacement vector
ub can be expressed as

ub D ˆb qb; (26)

in which ˆb is the interface eigenvector matrix, and qb is the corresponding generalized
coordinate vector.

Table II. Relative eigenvalue errors for the rect-
angular plate problem when NrDN bD 100.

Mode number IRS Proposed

1 6.76228E-05 4.10733E-10
2 1.49447E-04 8.54147E-10
3 9.19271E-03 8.54488E-08
4 2.56983E-03 3.11311E-08
5 6.90573E-03 3.50102E-07
6 3.50973E-02 2.33387E-06
7 7.79645E-02 1.64861E-06
8 4.39716E-02 5.49240E-06
9 1.18145E-01 1.47466E-05
10 1.34452E-01 7.27208E-06
11 1.53947E-01 6.60347E-05
12 2.96908E-01 7.86423E-05
13 2.15174E-01 1.24925E-04
14 2.02588E-01 6.41646E-05
15 4.96222E-01 3.22909E-04
16 4.24919E-01 1.60237E-04
17 8.63934E-01 2.46142E-04
18 5.63174E-01 8.42677E-04
19 5.58491E-01 1.45123E-04
20 5.65632E-01 4.43949E-04
21 5.14183E-01 3.48023E-04
22 8.48793E-01 3.16917E-03
23 9.60316E-01 6.11854E-03
24 1.62232EC00 2.06494E-03
25 1.39140EC00 5.03076E-03

Table III. Specific computational cost for the rectangular plate problem when Nr D N b D 100.

Computation times

Methods Items Related Equations [sec] Ratio [%]

IRS
Transformation procedure 8, 13 205.70 99.95
Reduced eigenvalue problem 14 0.10 0.05
Total — 205.80 100.00

Proposed

Algebraic substructuring 16 0.05 0.02
Calculation of OMb and OKb matrices 25 0.61 0.30
Eigenvalue problem for the interface boundary 26 0.49 0.24
Calculation of Mb , Kb and Hb matrices 29, 34 0.03 0.01
Calculation of QMb and QKb matrices 38 0.70 0.34
Reduced eigenvalue problem 39 0.10 0.05
Total — 1.98 0.96

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 109:1701–1720
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In Equation (26), ˆb and qb can be decomposed into the dominant and residual terms as follows

ˆb D Œˆ
d
b ˆ

r
b�; qb D

�
qd
b

qr
b

�
(27)

where ˆdb and ˆrb are the dominant and residual interface normal modes, respectively, and qd
b

and
qr
b

are the generalized coordinate vectors corresponding to ˆdb and ˆrb , respectively.
Considering only the dominant interface normal modes ˆdb , we can obtain the reduced interface

displacement vector Nub as

ub � Nub D ˆ
d
b qdb ; (28)

in which ˆdb can be effectively calculated by using the shift-invert Lanczos algorithm.
Using Equation (28) in Equation (22), the eigenvalue problem for the reduced interface boundary

is obtained as

Kb qdb D N�Mb qdb with Mb D .ˆ
d
b /
T OMb .ˆ

d
b /;Kb D .ˆ

d
b /
T OKb .ˆ

d
b /; (29)

in which Mb and Kb are the mass and stiffness matrices for the reduced interface boundary, and
N� is the approximated eigenvalue. Note that Mb and Kb are N b � N b matrices, where N b is the
number of the dominant interface normal modes.

3.4. Substructural inertial effect condensation

Considering the first order term of � in Equation (18a), the approximated substructural displacement
vector Nus in Equation (19) becomes more precise

Nus D .‰c C �K�1s OMc/ub: (30)

Combining Equations (28) and (30), the approximated global displacement vector Nug in Equation
(20) is redefined as

Nug D
�
Nus
Nub

�
D ‰1qdb with ‰1 D N‰ C �‰a; N‰ D

"
‰cˆ

d
b

ˆdb

#
;‰a D

�
K�1s OMcˆ

d
b

0

�
; (31)

where ‰1 is a newly defined interface constraint mode matrix compensating for the inertial effects
of the substructures by �‰a, and N‰ is the reduced interface constraint mode matrix.

Figure 4. Stiffened plate problem (8,580 shell elements, 52,662 DOFs).
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Employing the matrix ‰1 in Equation (31), the following reduced matrices are defined as

QMb D ‰T1 Mg‰1 DMb C � N‰
T

Mg‰a C �‰
T
a Mg

N‰ C �2‰Ta Mg‰a; (32a)

QKb D ‰T1 Kg‰1 D Kb C � N‰
T

Kg‰a C �‰
T
a Kg

N‰ C �2‰Ta Kg‰a; (32b)

in which

N‰
T

Mg‰a D .ˆ
d
b /
T OM

T

c A with A D K�1s OMc.ˆ
d
b /; (33a)

‰Ta Mg‰a D ATMsA; N‰
T

Kg‰a D 0; ‰Ta Kg‰a D N‰
T

Mg‰a: (33b)

Pre-multiplying M
�1

b in Equation (29), we obtain the following relation

N� qdb D Hbqdb with Hb DM
�1

b Kb: (34)

Substituting the terms in Equation (33) into Equation (32), and using N� instead of the unknown �,
Equation (32) can be rewritten as

QMb D Mb C N� .ˆ
d
b /
T OM

T

c AC N�AT OMcˆ
d
b C
N�2ATMsA; (35a)

Figure 5. Relative eigenvalue errors by the IRS and proposed methods for the stiffened plate problem:
(a) Nr D 300 and N b D 300 (b) Nr D 600 and N b D 600.
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QKb D Kb C N�
2.ˆdb /

T OM
T

c A: (35b)

Using the relationship N� qd
b
D Hbqd

b
in Equation (34), the reduced matrices in Equation (35) are

redefined as

QMb D Mb C .ˆ
d
b /
T OM

T

c A Hb CHT
b AT OMcˆ

d
b CHT

b ATMsA Hb; (36a)

QKb D Kb CHT
b .ˆ

d
b /
T OM

T

c A Hb; (36b)

where the matrix A can be represented in a submatrix form as

A D

2
6664

A1
A2
:::

An

3
7775 with Ai D .Ks

i /
�1 OM

c

i .ˆ
d
b /: (37)

Substituting OMc in Equation (24) into Equation (36), the reduced matrices of the proposed method
are finally obtained in a submatrix form as follows:

Figure 6. Relative eigenvalue errors by the IRS and proposed methods for the stiffened plate problem:
(a) Nr D 3600 and N b D 300 (b) Nr D 4200 and N b D 600.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 109:1701–1720
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QMb D Mb C R1 C RT1 C R2; QKb D Kb CHT
b R1 (38a)

with R1 D
nX
iD1

.ˆdb /
T . OM

c

i /
TAiHb;R2 D

nX
iD1

HT
b ATi MiAiHb; (38b)

in which QMb and QKb are the reduced mass and stiffness matrices of size N b � N b . It is important
to note that the reduced matrices are efficiently calculated through multiplications and summations
of submatrices without considering the global transformation matrix.

In the proposed method, the eigensolutions are then approximated from the following reduced
eigenvalue problem

QKb. N'/i D N� i QMb . N'/i for i D 1; 2; : : : ; N b; (39)

Table IV. Specific computational cost for the stiffened structure problem whenNr D 3; 600 andN b D 300.

Computation times

Methods Items Related Equations [sec] Ratio [%]

IRS
Transformation procedure 8, 13 5514.97 99.93
Reduced eigenvalue problem 14 3.74 0.07
Total — 5518.71 100.00

Proposed

Algebraic substructuring 16 0.52 0.01
Calculation of OMb and OKb matrices 25 10.41 0.19
Eigenvalue problem for the interface boundary 26 16.73 0.30
Calculation of Mb , Kb and Hb matrices 29, 34 1.12 0.02
Calculation of QMb and QKb matrices 38 12.26 0.22
Reduced eigenvalue problem 39 0.50 0.01
Total — 41.54 0.75

Figure 7. Semi-submersible rig problem (16,800 shell elements, 102,054 DOFs).
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where N� i and . N'/i are the approximated eigenvalues and eigenvectors, respectively.
The approximated global eigenvectors are calculated by

. N'g/i D ‰1 N'i for i D 1; 2; : : : ; N b; (40)

in which

‰1 D

2
666664

‰11
‰12
:::

‰1n
ˆdb

3
777775 with ‰1i D ‰

c
i ˆ

d
b C .Ks

i /
�1 OMc

i ˆ
d
b Hb for i D 1; 2; : : : ; n: (41)

The computational procedure of the algebraic dynamic condensation proposed in this study is
summarized in Table I.

4. NUMERICAL EXAMPLES

In this section, the performance of the proposed method is tested considering four practical struc-
tural problems frequently handled in the ship and ocean engineering fields – a rectangular plate, a

Figure 8. Relative eigenvalue errors by the proposed method for the semi-submersible rig problem, when
the number of substructures are 32, 64, and 128: (a) N b D 300 (b) N b D 600.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 109:1701–1720
DOI: 10.1002/nme



1714 S.-H. BOO AND P.-S LEE

stiffened plate, a semi-submersible rig, and a cargo hold structure. The accuracy and computational
efficiency of the proposed method are compared with those of the IRS method.

In the IRS method, the retained DOFs are selected by using the ratio of the diagonal terms of
mass and stiffness matrices [4, 6]. In the proposed method, algebraic substructuring is performed
using METIS [28], which is an efficient matrix reordering and partitioning software package, and
the frequency cut-off method is employed to select the dominant interface normal modes [17].

All the structural problems are modeled using 4-node MITC shell finite elements [35–37], and
a free boundary condition is imposed. The material property of a mild steel is used, with Young’s
modulus E D206 GPa, Poisson’s ratio � D0.3, and density � D 7850 kg=m3. The numerical
procedure is implemented in MATLAB and a personal computer (Intel core (TM) i7-3770, 3.40 GHz
CPU, 32GB RAM) is used for computation.

To measure the accuracy of reduced models constructed by the IRS and proposed methods, the
following relative eigenvalue error is adopted

�i D
�i � �i

�i
; (42)

in which �i denotes the relative eigenvalue error for the i th mode and the exact global eigenvalue
� i is obtained from the eigenvalue problem of the global structural FE model in Equation (3).

4.1. Rectangular plate problem

We consider the rectangular plate modeled by a 60 � 36mesh of 4-node MITC shell finite elements
as shown in Figure 2, and the number of DOFs is 11,285. The length L, width B , and thickness h
are 20, 12, and 0.025 m, respectively.

Table V. Computational cost for the semi-submersible rig
problem when N b D 300.

Computation times
Methods Number of substructures [sec]

IRS — N/A

Proposed
32 207.30
64 101.63

128 75.89

Figure 9. Cargo hold structure problem (26,761 shell elements, 157,368 DOFs).
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The mass and stiffness matrices are partitioned into 16 substructures and interface boundary using
algebraic substructuring. Two different sizes of the reduced model are considered:Nr D N b D 100
and Nr D N b D 300. The performance of the proposed method is compared with that of the
IRS method.

Figure 3 presents the relative eigenvalue errors obtained using the IRS and proposed methods
in the two numerical cases considered. Table II lists the relative eigenvalue errors when Nr D
N b D 100. Notice that the proposed method constructs more accurate reduced models than the
IRS method. Table III shows the computational cost when Nr D N b D 100. Compared with the
computation time required for the IRS method, the proposed method only requires 0.96% of the
computation time. That is, the proposed method is more than 100 times faster than the IRS method
in terms of computation. The results show that the proposed method outperforms the IRS method in
both accuracy and computational efficiency.

4.2. Stiffened plate problem

As shown in Figure 4, a stiffened plate, an important component of ship structures, is considered.
Length L, breadth B , and stiffener spacing S are 26, 6, and 2 m, respectively. The stiffener is
composed of a vertical web of height 0.5 m and a flange of breadth 0.2 m, and the thickness h is
0.019 m. The stiffened plate structure is modeled using 8,580 shell finite elements and the number of

Figure 10. Relative eigenvalue errors by the proposed method for the cargo hold structure problem, when
the number of substructures are 32, 64, and 128: (a) N b D 200 (b) N b D 600.
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DOFs is 52,662. The mass and stiffness matrices are partitioned into 64 substructures and interface
boundary using METIS. Figure 5 presents the relative eigenvalue errors obtained using the IRS and
proposed methods for two different sizes of the reduced models: Nr D N b D 300 and Nr D N b D
600. The excellent accuracy of the proposed method is observed in both cases.

We then investigate sizes of the reduced models obtained from the two methods, when the accura-
cies of the reduced models are similar. As shown in Figure 6, to obtain a similar level of accuracy, the
proposed method requires reduced models of sizes, N b D 300 and N b D 600, and the IRS method
requires reduced models of sizes, Nr D 3; 600 and Nr D 4; 200. These results show that the pro-

Table VI. Computational cost for the cargo hold structure
problem when N b D 200.

Computation times
Methods Number of substructures [sec]

IRS — N/A

Proposed
32 496.30
64 221.72

128 133.01

Figure 11. Relative eigenvalue errors by the CB and proposed methods for the stiffened plate problem:
(a) Np D 3; 582(CB) and N b D 300(proposed), (b) Np D 3; 722(CB) and N b D 600(proposed).
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posed method can provide much smaller reduced models for a desired accuracy. The computational
cost required is presented in Table IV when N b D 300 and Nr D 3; 600.

4.3. Semi-submersible rig problem

A semi-submersible rig structure shown in Figure 7 is considered. The corresponding breadth B ,
column width C , and heights H1 and H2 are 80, 20, 50, and 15 m, respectively. The length L and
thickness h of the structure are 110 and 0.018 m, respectively. The structure was modeled using
16,800 shell finite elements and 102,054 DOFs. In this FE model, the IRS method fails to construct
any size of reduced models because of the large size of computer memory required for storing almost
fully populated matrices, TG and Ta.

Using METIS, the global mass and stiffness matrices of the FE model are partitioned into 32,
64, and 128 substructures. We construct two different sizes of the reduced model: N b D 300 and
N b D 600. We then investigate the effect of the number of substructures on the performance of the
proposed method. Figure 8 and Table V show that, as the number of the substructures increases, both
accuracy and computational efficiency improve; a particularly interesting feature of the proposed
method.

4.4. Cargo hold structure problem

Finally, we consider a cargo hold structure of an oil carrier as shown in Figure 9. The height H ,
breadth B , length L, and thickness h of the carrier are 30, 50, 87, and 0.025 m, respectively. We use
26,761 shell finite elements and 26,228 nodes for finite element modeling. The number of DOFs is
157,368. In this case, the IRS method also does not work.

The global mass and stiffness matrices are partitioned into 32, 64, and 128 substructures. Two
numerical cases are considered: N b D 200 and N b D 600. Figure 10 and Table VI present the
accuracy and computational efficiency of the proposed method, respectively. As the number of the
substructures increases, the performance of the proposed method also grows.

5. COMPARISON WITH THE CRAIG BAMPTON METHOD

In this section, we compare the accuracy and computational efficiency of the proposed method with
those of the CB method, a well-known CMS method widely used in structural dynamics.

In the CB method, the reduced mass and stiffness matrices are calculated by

M D NT
T

CBMg
NTCB ; K D NT

T

CBKg
NTCB with NTCB D Œˆd ‰ �; (43)

where NTCB is the transformation matrix of the CB method, which is constructed using the dominant
fixed-interface normal modes ˆd obtained from the substructural eigenvalue problems [17, 23] and
the interface constraint modes‰ . The detailed formulation of the CB method is shown in References
[17, 23].

The major differences between the CB and proposed methods comes from how to accomplish the
substructuring, and whether the substructural eigenvalue problems are solved or not. With the CB
method, the substructuring is accomplished manually using the physical domain-based partitioning
considering the geometrical characteristics of the global structure. This means that it is difficult to
construct a large number of substructures using this method.

Let us consider the case that a large size FE model (over 105 DOFs) is handled using the CB
method. When the number of substructures used is small, each substructure contains relatively large
DOFs. Then, the computational costs for calculating the dominant fixed-interface normal modesˆd
and the interface constraint modes ‰ becomes expensive. Even if the global structure is partitioned
into many substructures, it induces a considerably larger interface boundary; thus the size of the
reduced system also becomes large. That is, in any case, the CB method has limitations for dealing
with large FE models.

On the other hand, with the proposed method, the substructuring procedure is automatic from the
aspect of algebraic perspective, and it provides the potential to make hundreds of the substructures
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without considering a physical domain. Therefore, we can handle very small submatrices and the
interface constraint modes ‰ that require large computational cost in the CB method, can be cal-
culated very efficiently. Furthermore, using the proposed method, there is no need to calculate the
dominant fixed-interface normal modes ˆd . This feature is a benefit of the proposed method that
saves computational costs compared with CMS methods.

To compare the performances of the CB and proposed methods, the stiffened plate problem in
Figure 4 is considered again. We reuse the numerical results described in Figure 5 and Table VI for
the proposed method. For the CB method, the stiffened plate is partitioned evenly into 18 substruc-
tures, and the size of the interface boundary Nb is 3,522. The detailed partitioning information is
shown in Reference [23]. For two numerical cases, we use 60 and 200 dominant substructural modes
(Nd D 60 and Nd D 200/ and the reduced size of the matrices, Np (where Np D Nd C Nb/, are
3,582 and 3,722, respectively. Figure 11 shows the relative eigenvalue errors obtained by the CB and
proposed methods, and Table VII lists the relative eigenvalue errors for the 1st–25th global modes
corresponding to Figure 11(a). We observe that the proposed method gives more accurate reduced
models than those obtained by the CB method, even though using reduced models that are much
smaller. Table VIII shows the computational cost. Compared with the computation time required for

Table VII. Relative eigenvalue errors for the
stiffened plate problem in Figure 11(a).

Mode number CB Proposed

1 5.39755E-06 5.27029E-10
2 1.59490E-04 2.30534E-10
3 2.06890E-04 2.45733E-10
4 7.96874E-04 4.85340E-09
5 1.24680E-03 1.97862E-08
6 2.18312E-03 2.10973E-09
7 3.62139E-03 7.19681E-10
8 1.49353E-03 9.13311E-08
9 7.30045E-03 3.63130E-08
10 4.73748E-03 1.38734E-06
11 4.03604E-03 1.13632E-06
12 5.81648E-03 6.35017E-07
13 6.26525E-03 6.75291E-07
14 2.68507E-03 2.50865E-07
15 7.47668E-03 1.13370E-06
16 6.58250E-03 2.42809E-06
17 6.09378E-03 4.40237E-06
18 7.02676E-03 7.97968E-06
19 7.74041E-03 8.72474E-06
20 8.42764E-03 1.31524E-05
21 1.82465E-02 5.62026E-06
22 1.53537E-02 5.85527E-06
23 1.99614E-02 6.37930E-06
24 5.50344E-03 9.32504E-06
25 6.53516E-03 1.65506E-05

Table VIII. Computational cost for the stiffened structure problem in Figure 11(a) (The sizes of the reduced
models considered: Np D 3; 582 and N b D 300 for the CB and proposed methods, respectively).

Computation times

Methods Items [sec] Ratio [%]

CB

Calculation of the dominant fixed interface normal modes ˆd 23.03 13.94
Calculation of the interface constraint modes ‰ 124.43 75.30
Transformation procedure 17.78 10.76
Total 165.24 100.00

Proposed 41.54 25.14
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the CB method, the proposed method requires only 25.14 % of the computation time. Therefore, we
can say that the proposed method is more competitive than the CB method regarding the aspects of
accuracy and efficiency.

6. CONCLUSIONS

In this study, the algebraic dynamic condensation method is proposed. Employing algebraic sub-
structuring, the global mass and stiffness matrices are automatically partitioned into many small
submatrices, and these submatrices are designated as the substructures and interface boundary. The
substructural stiffness is condensed into the interface boundary, and then the interface boundary is
reduced considering only the dominant interface normal modes. Finally, the reduced model is con-
structed by condensing the substructural inertial effects into the reduced interface boundary. The
formulation was derived at a submatrix level to avoid expensive global matrix operations and matrix
populations. We investigated the excellent accuracy and computational efficiency of the proposed
method through various practical structural problems. The proposed method handled relatively large
FE models, for which the IRS method failed to work, and showed more competitive performance
than the CB method.

In future work, to solve FE models with more than several millions of DOFs, it would be
valuable to develop a more efficient algebraic dynamic condensation method employing the multi-
level algebraic substructuring. Based on the proposed method, an effective iterative scheme could
also be developed. A mathematical investigation of such a method would significantly further the
understanding of the characteristics of the proposed method.
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